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S
ingle-molecule spectroscopy in solu-
tion offers the unique opportunity to
study biomolecules in a close-to-native

environment, free of ensemble averaging
and the possible perturbative effects of sur-
face attachment or encapsulation.1 How-
ever, Brownian motion poses a serious
limitation on the observation times of nano-
scale objects in the aqueous phase. Char-
acteristic dwell times of typical protein
molecules in a diffraction-limited confocal
volume (as in fluorescence correlation spec-
troscopy, FCS) are on the order of several
milliseconds, precluding the study of long
time dynamics. Moreover, simple diffusion
through a focused spot causes each mole-
cule to experience different paths through
the Gaussian-shaped focus and thus to
have a fluorescence signal with ill-defined
brightness.
Faced with such limitations, there has

been tremendous interest in methodology
development to trap and/or track single
nano-objects in solution in recent years,
for example, by using various methods to
follow the Brownian object,2�7 by enhance-
ment of the field gradient in a dielectric
optical trap,8 by engineering the electro-
static potential around charged nanoscale
objects,9,10 and by electrokinetic trapping
with real-time feedback in the anti-Brownian
electrokinetic (ABEL) trap,11,12 the method
treated here.
The ABEL trap works by real-time mon-

itoring of the position of the diffusing mo-
lecule and applying a set of voltages so that
the induced electrokinetic drift approxi-
mately cancels the Brownian displacement
within the bandwidth of the feedback sys-
tem. Since initial first implementations which
used a fast CCD camera as position detector
and software-based signal processing,13 the

technology has shifted to revolving beam-
based position sensing and an all-hardware,
analog feedback system,14 with much im-
proved detection efficiency, feedback band-
width, and spatially uniformoptical intensity
in the trapping region on time scales longer
than the revolution time. Such a system has
enabled real-time monitoring of photody-
namical processes of single photosynthetic
antenna proteins15 as well as measure-
ments of ATP binding stoichiometry in mul-
tisubunit enzymes.16Most recently, we have
theoretically outlined an optimal trapping
strategy that utilizes a grid-scanning pattern
of the excitation beam to encode more
specific position information on every de-
tected photon, and a Kalman filter-based
signal-processing algorithm for optimal on-
line estimation of position;17 we showed by
Monte Carlo simulations that tighter trap-
ping can be expected as compared to pre-
vious schemes.
In this paper we report an advanced,

adaptive ABEL trap based on such an opti-
mal strategy. (A related system,which pushes
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ABSTRACT We present the design and implementation of an adaptive Anti-Brownian

ELectrokinetic (ABEL) trap capable of extracting estimates of the diffusion coefficient and mobility

of single trapped fluorescent nanoscale objects such as biomolecules in solution. The system features

rapid acousto-optic scanning of a confocal excitation spot on a 2D square lattice to encode position

information on the arrival time of each detected photon, and Kalman filter-based signal processing

unit for refined position estimation. We demonstrate stable trapping of multisubunit proteins (D≈
22 μm2/s) with a count rate of 6 kHz for as long as 15 s and small single-stranded DNA molecules

(D ≈ 118 μm2/s) at a 15 kHz count rate for seconds. Moreover, we demonstrate real-time

measurement of diffusion coefficient and electrokinetic mobility of trapped objects, using adaptive

tuning of the Kalman filter parameters.

KEYWORDS: ABEL trap . Kalman filter . single molecule . fluorescence microscopy .
diffusion coefficient . electrokinetic mobility
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the limit of electrokinetic trapping in solution to single
fluorophores has been recently described.18,19) We
present a new feedback algorithm based on an adap-

tive Kalman filter to extract estimates of the diffusion
coefficient and electrokinetic mobility of trapped ob-
jects in real time. As experimental demonstrations, we
first show the stable trapping of single labeled proteins
and small oligonucleotides with low count rate and
subsequently demonstrate the adaptive feature of the
trap on fluorescently labeled nanospheres.
Figure 1 illustrates the working principle of a

photon-by-photon, Kalman filter-based ABEL trap,
which is generally implemented in a microfluidic sam-
ple cell which is thin in the z-direction (see inset and
caption); therefore, the trap suppresses x�y Brownian
motion. To trap singlemolecules that are generally dim
and fast-diffusing, it is critical tomost efficiently extract
position information in real time. In our design, the
excitation beam traverses a 32-point grid through a
knight's tour pattern (Figure 2a).17,20 Each detected
fluorescent photon, depending on its arrival time, is
mapped to the current position of the excitation beam
on the grid. This position (which we call the raw
measurement y) serves as a reasonably good estimate
of the actual position of the molecule, since the

probability of emitting a photon is largest when the
molecule overlaps with the center of the excitation
beam. We use a Kalman filter and a Langevin equation
ofmotion for the diffusingmolecule in the applied field
to refine the raw measurement. The Kalman filter,21

well-known in control system theory, efficiently and
optimally estimates the internal states of a linear
dynamic system from a series of noisy measure-
ments,22 provided that an accurate model of the
system dynamics is available, and is perfectly applic-
able to the real-time position estimation problem in
the ABEL trap. A detailed analysis can be found in ref
17. The algorithm in its entirety is included in the
Supporting Information.
For every detected photon, the Kalman filter outputs

a refined estimate of position (posterior estimate,
termed x̂þ), which is optimal in the best-case scenario.
Because the particle position is then approximately
known, voltages are computed (with gain g) which
generate an applied field vector (u) to induce an
electrokinetic flow in the opposite direction from the
trap center, producing the required negative feedback
for approximate cancellation of Brownian motion.
The Kalman filter assumes perfect knowledge of the

systemmodel parameters (in the case of the ABEL trap,

Figure 1. Working principle of the ABEL trap. Right bottom inset: 3D view of themicrofluidic device34 used to implement the
ABEL trap. The depth of the channel near the center (inside red dashed square) is ∼600 nm, designed to confine the object
along the z-dimension as well as to support a strong electrokinetic flow for actuation. Macroscopic electrodes inserted into
the fluid channels are also shown. x�y Brownian motion is suppressed by feedback control (red dashed area, main figure): A
focused laser spot (redGaussian) rapidly scans through a 32-point grid on a square lattice through a knight's tour pattern (see
Figure 2a for the pattern and the order of beampositions).When the excitationbeam is close to the real position of a diffusing
object (blue dot), a fluorescence photon can sometimes be detected by a single photon counter (SPC). The position of the
beam at the photon detection event (in the example, position number 23) is taken to be the raw measurement (y) of the
object's position. The rawmeasurement is then refinedby a Kalman filter, given the diffusivity andmobility information of the
object, to produce a better estimate (x̂þ). A pair of voltages are calculated and applied to four electrodes in the solution to
induce a restoring electrokinetic flow (green arrows show the flow decomposed into its Cartesian components) to bring the
object back to the center (black cross). This process repeats for every detected photon.
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the diffusion coefficient D and electrokinetic mobility
μ of the object in the trap). Errors in modeling lead to
performance degradation, as was analyzed in early
development of the Kalman filter.23 To address this
problem, various adaptation methods have been
proposed24,25 which aim to estimate the model para-
meters together with estimation of states. Algorithms
of this kind include maximum likelihood estimators,26

multimodel Kalman filtering,27 and innovation-based
methods.28 Although not as mathematically rigorous
as the maximum likelihood approach, the innovation-
based methods (to be described below) are less com-
putationally intensive and are well suited for practical
real-time applications.

RESULTS AND DISCUSSION

Adaptive Trapping Algorithm Based on Innovation “Whiten-
ing”. We formulate our adaptive trapping algorithm on
the basis of the innovation approach. For clarity, we
restrict the following discussion to one Cartesian com-
ponent on the 2D plane. The “innovation” (or measure-
ment residue) sequence (defined as the difference
between raw measurement and prior estimate, rk =
yk � x̂k

�) represents the new information available in
measurement yk, that is, the new information arising
from photon detection at time k when the beam is at
position y. The optimality of the Kalman filter is re-
flected in the fact that if the model is accurate, the
innovation at time k is statistically independent of all
the past or future innovations, that is, ri (i = 1, 2, 3, ...) is
an uncorrelated white noise sequence. Mathemati-
cally, we have, with E the expectation,

E(rk 3 rkþ j) ¼ 0, for j > 0 (1)

Any error in modeling would result in correlated
(nonwhite) innovation sequences. It can be shown (see
Supporting Information for derivation) that in the case of
the ABEL trap, an inaccurately modeled D (parametrized
by the fractional error R = ΔD/D) would cause correla-
tions in the innovation sequence approximated by

E(rk 3 rkþ j) � � R 3 (2DΔt )
~K 3 (2 � ~K )

3 (1 � ~K ) j (2)

where Δt is the average duration of the feedback kicks,
and ~K is the averaged Kalman gain during trapping.
Similarly, amodelingerror in themobilityμ (parametrized
by the fractional error β = Δμ/μ) would produce corre-
lated innovation sequence approximated by

E(rk 3 rkþ j) � β 3 (gμΔt ) 3 (2DΔt ) 3 (1 � μgΔt ) j � 1 (3)

where g is the feedback gain. It can be seen from eqs 2
and 3 that nonzero autocorrelation in the innovation
sequence contains informationabout theunderlying true
model parameters.Moreover, owing to the different time
dependence of displacements due to electrokinetic flows
(� Δt, the time between photon detection events)
and due to Brownian motion (� (Δt)1/2), the effect of
modeling error in D and μ can be separated, when the
autocorrelation is examined at different time lags (see
Supporting Information for details). Specifically, short
time correlations are mainly caused by errors in the
modeled diffusion coefficient, while long time correla-
tions are mostly related to errors in modeling the
mobility.

Figure 3 shows Monte Carlo simulation results of
the short lag time (defined in the simulation as τ < 100
μs, termed stCorr, Figure 3a) and the long lag time (300
< τ < 2000 μs, termed ltCorr, Figure 3b) correlations of
the innovation sequence as a function of fractional
modeling error. It can be seen that the contours are
almost orthogonal near the origin in the parameter
space, reflecting good separation of the effect caused
by the two parameters. The adaptive algorithm works
by real-time tuning of D and μ in the direction that
respectively minimizes stCorr and ltCorr, as detailed in
the Supporting Information, a process which we term
“correlation whitening”. Figure 3c shows the compar-
ison between the autocorrelation of the innovation
sequence for the correct model (gray upper) and
for a situation where D is underestimated and μ is
overestimated (red lower). Figure 3d illustrates the
adaptation process on the parameter space from an
actual experimental implementation described below
in Figure 6a.

In studying single molecules in aqueous buffers,
both the diffusion coefficient D and electrokinetic

Figure 2. The beam traversal pattern. (a) The designed beam trajectory and calculated time-averaged intensity over the
trapping region (scale bar = 0.5 μm). (b) Actual time-averaged intensitymap, acquired by scanning a 100 nm fluorescent bead
over the trapping region. (c) Position sensitivity of the apparatus, shown as contour plots ofmeasured position (interval: 0.25
μm) of the fluorescent bead in panel b. Position response is linear and orthogonal in an area of 2 μm� 2 μmnear the center.
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mobility μ may be heterogeneous and time-depen-
dent in general. Previous efforts to estimate D and μ
were achieved by offline postprocessing.12,17 Our new
adaptive trapping method offers two major advan-
tages over offline methods: first, because of its real-
time nature, the information learned about each object
in the trap is immediately used to improve subsequent
trapping of the object; second, it becomes possible to
monitor a change in either of the two dynamical
properties in real time (i.e., a change in diffusion
coefficient of amacromolecule due to binding/unbind-
ing events, or a change in mobility due to changes in
charge state). We note that the starting estimates
(D0, μ0) for the Kalman filter can be chosen by perform-
ing a bulk measurement using fluctuation correlation
spectroscopy29,30 or other methods.

The Knight's Tour Beam Scanning Pattern. Figure 2b illus-
trates the average intensity profile of an actual knight's
tour scan, acquired by x�y scanning a fluorescent bead
at the focal plane using a piezoelectric stage. A reason-
ably good agreement with the designed pattern
(Figure 2a) is achieved. Figure 2c shows the position
sensitivity of the trap, acquired by averaging the raw
measurements (15 ms averaging time) as the bead is
scannedover the trapping area. Themeasured position
is linear in both the x and y dimensions over an area of
2 μm � 2 μm near the center of the trapping region,

suggesting the possibility of using the apparatus as a
tracking device31 with time resolution limited only by
photon counting rate.

Trapping Fluorescently Labeled Proteins and Oligonucleo-
tides. To compare the knight's tour/Kalman approach
with previous work, we first implement the trap with-
out adaptation, using model parameters from a FCS
measurement. We trapped single molecules of the
chaperonin protein from Methanococcus maripaludus

(Mm-cpn), a large multisubunit enzyme with a molec-
ular weight of about 1 MDa (∼15 nm in diameter).32

These molecules are stably trapped when labeled with
just a single Atto647N fluorophore, with a detected
count rate of 6 kHz (average pumping intensity
750 W/cm2) and a signal-to-background ratio of 1:1
(Figure 4). Occasionally, an enzyme labeled with two
fluorophores is observed as twobrightness levels (third
trace from the top in Figure 4a). In this measurement,
the majority of the background signal arises from
autofluorescence of the glass coverslip that seals the
microfluidic trapping cell. The long trapping times
achieved in this experiment reflect the superior per-
formance of the trap, but are also largely due to the
photostability of Atto647N. This demonstrated cap-
ability of the ABEL trap offers unprecedented long
observation times for studying single enzymes in
solution without surface immobilization. Moreover,

Figure 3. Adaptive trapping by whitening the autocorrelation of the innovation sequence. (a) Long time correlation of the
innovation sequence as a function of model deviation showing the primary dependence on mobility error. (b) Short time
correlation of the innovation sequence as a function of model deviation showing the primary dependence on the diffusion
error. (c) Example autocorrelations of the innovation sequences. Gray circle: accurate model. Red circle: D overestimated by
45%, μ overestimated by 25%. (d) Simulated adaptation trajectory on the parameter space by correlation whitening using
parameters similar to the experiment in Figure 6, where the gray and red dots correspond to the two cases in panel c.
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themolecule is trapped in a region of relatively uniform
intensity, as evidenced by the constant emission
signals.

We next trapped single Atto647N-labeled oligonu-
cleotides composed of 30 thymine bases (30T, Ana-
Spec, Inc.). These single-stranded DNA biopolymers
have a molecular weight of 9 kDa and linear dimen-
sions of 9 nm along the chain. A bulk measurement of
the diffusion coefficient with fluorescence correlation
spectroscopy yielded a value of 118 ( 25 μm2/s
(Supporting Information, Figure S4). Using a higher
pumping intensity (1.7 kW/cm2), the 30T oligos can be
stably trappedwith a count rate of 15 kHz and the same
signal-to-background ratio as Mm-cpn (Figure 5). In
this case, however, the average trapping time, ex-
tracted by exponential fitting of the burst duration
histogram, is 0.97 s.

Real-Time Measurement of Diffusion Coefficient and Mobility
for Fluorescent Beads. To demonstrate the ability of the
adaptive trap to provide real-time measurement of
diffusion coefficient and electrokinetic mobility, we
used fluorescently doped polystyrene beads (Invitrogen)
as a proof-of-principle, because of their known sizes
and superior signal to background. Figure 6a shows
data from one 100 nmdiameter bead in the trap. In this
experiment, the Kalman filter initially operates with
user supplied model parameters (D = 11.2 μm2/s, μx =
μy = 500 μm/s/V), until at 4.7 s, the adaptation algo-
rithm is enabled. As can be seen from the correspond-
ing plot of real time diffusion coefficient and the two
mobility components (red and black), all three adapted
model parameters responded, in this case, to a lower

value (D≈ 3.8 μm2/s, μx ≈ 350 μm/s/V, μy≈ 250 μm/s/
V). The autocorrelation of the innovation sequence,
calculated from before (red region) and after (green
region) the adaptation, are plotted in Figure 6b. A
much “whitened” autocorrelation is observed as the
result of the adaptive tuning. Good qualitative agree-
ment between experiment and simulation (Figure 3c,
generated from parameters used in Figure 6a) can be
seen. It is interesting to note that in the case of this
particular bead, μx and μy adapt to different values,
possibly reflecting the inhomogeneity of the flow
along the two dimensions in the microfluidic environ-
ment. A distribution of measured diffusion coefficients
from this 100 nm bead mixture, collected from 30
beads, is plotted in Figure 6d (blue curve), with a mean
value of 3.8 μm2/s, in reasonably good agreement with
a value calculated from the Stokes�Einstein equation,
which is 4.4 μm2/s.

Similar measurements were performed on 26 nm
diameter beads in solution, and Figure 6c shows a
snapshot, where several beads with different diffusion
coefficients and brightness are captured by the trap.
We found that bright objects generally correlate with
lower diffusion coefficients, presumably because larger
beads contain more dye molecules. To rule out the
possibility that the measured diffusion coefficient is
affected by the object's brightness, we trapped a single
bead and modulated its brightness by changing the
excitation power, and minimal influence of brightness
on the measured diffusion coefficient is seen
(Supporting Information, Figure S5). In contrast to the
100 nm bead case, the 26 nm beads appear to be less

Figure 4. Trapping single multisubunit enzyme molecules (Mm-cpn, labeled with Atto647N) with optimal filtering: (a)
example trajectories of detected fluorescence counts in 10 ms bins; (b) histogram of trapping durations.

Figure 5. Trapping single 30 base oligonucleotides, labeled with a single Atto647N fluorophore. (a) Example trajectories of
detected fluorescence counts in 10 ms bins. (b) Histogram of trapping durations.
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homogeneous in size, indicated by the broader dis-
tribution of measured diffusion coefficients (Figure 6d,
orange curve). This inhomogeneity agrees qualitatively
with the manufacturer's specification (20% size poly-
dispersity for the 26 nm beads versus 5% for 100 nm
beads). The measured electrokinetic mobility of the
beads varies slightly between trapping cells, but the
average value of 250 μm/s/V, acquired from the adap-
tive trapping of the 26 nmbeads, agrees favorably with
a bulk measurement by FCS, under identical sur-
face preparation conditions (Supporting Informa-
tion, Figure S6).

The precision of the diffusion coefficient/mobility
obtained by our adaptive Kalman filtering method
depends on several factors: first of all, the precision
of measuring the scan grid spacing (a) and the laser
beamwaist (w). The grid spacing defines the length
scale so that if not characterized accurately, systematic
errors in estimating both D and μ will occur. The
beamwaist defines the error variance of individual
measurements and is critical in the calculation of the
Kalman gain (Kk). An inaccurate beamwaist would thus
affect the estimation precision of the diffusion coeffi-
cient (eq 2), but not the mobility. Second, and perhaps
more importantly, the presence of background
photons would greatly affect the estimation of the
diffusion coefficient. Intuitively, the fact that every
detected photon has a certain probability to originate
from background would increase the measurement
noise accordingly (the measurement error variance

would be greater than (w/2)2). The effect is qualitatively
similar to the case of an underestimated beamwaist, as
discussed above. A significant amount of background
photons would also introduce non-Gaussian statistics
to the problem, in which case the Kalman filter ceases
to be a truly optimal solution and complete treatment
is generally beyond efficient implementation. To retain
the favorable computational complexity of the Kalman
filter while taking background photons into account,
we used a built-in “innovation filter” to reject photons
with large measurement residues (over a user defined
threshold),33 since these are most likely to be gener-
ated by background photons (see Supporting Informa-
tion for details). While the extracted D and μ can be
particularly helpful in sensing changes in these para-
meters in real time, the absolute accuracy of both
depend on the effectsmentioned above, andmeasure-
ments on a calibration object may be necessary for
precise values.

CONCLUSION

We have presented a detailed design and imple-
mentation of an advanced ABEL trap for single nano-
scale objects in solution. With the efficient and optimal
signal processing strategy provided by Kalman filter-
ing, we have achieved stable trapping of single large
multisubunit enzymes (molecular weight: 930 kDa) as
well as single small oligonucleotides (molecular
weight: 9 kDa) labeled with a single fluorescent dye
molecule, with a signal-to-background ratio of only 1:1.

Figure 6. Adaptive trapping of fluorescent polystyrene beads of different sizes. (a) Trapping signals from one 100 nm bead.
The simultaneously recorded intensity trace (upper) and extracted diffusion coefficient (middle) and electrokinetic mobility
(lower) are shown.At around4.7 s, adaptation is enabled, beforewhichuser supplied initial parameterswereused (see text for
details). (b) Autocorrelation of measured innovation sequences, from corresponding regions shown in panel a. (c)
Fluorescence emission from several trapped beads with nominal size of 26 nm, with real-time extracted diffusion coefficient
and electrokinetic mobility as in panel a. Each bead is actively released to allow another bead to occupy the trap (except at
around 37 s, where a brighter bead diffused in and replaced the previous occupant). Update rates in D and μ correlate with
intensity since adaptive tuning is performed for every fixed number of detected photons. Values of D and μ are independent
of count rate (Supporting Information, Figure S5). (d) Histograms of themeasured diffusion coefficients for the 100 nm (blue)
and 26 nm beads (orange).
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We expect further improvement of the trap's capability
to localize smaller objects when using an all-quartz cell
design with lower background.
We also outlined a strategy to estimate the diffusion

coefficient and electrokinetic mobility of trapped ob-
ject in real-time, using adaptive tuning to whiten the
innovation sequence. We demonstrated the technique

on fluorescently labeled polystyrene beads of different
sizes. The adaptive capability of the trap ensures that
the estimation algorithm stays optimal for different
objects which may enter the trap. This approach could
also facilitate the detection of singlemolecule binding-
unbinding events in the ABEL trap when such events
change the diffusion coefficient of the trapped object.

METHODS
Beam Scanning Pattern. We use a pair of acousto-optical beam

deflectors (AOBD, AA Optoelectronics, Fr, MT110-B54A1.5-VIS)
to create the scanning pattern in the focal plane. With w =
0.4 μm and a = 0.5 μm, we achieve a Rayleigh range (focal
depth) of 0.8 μm that matches well with the depth of the
microfluidic cell in the z direction and an overall x�y trapping
region of 2.5 μm� 2.5 μm in size. The actual frame rate is 39 kHz
(point dwell time of 800 ns). Full optical details are presented in
the Supporting Information.

Algorithm Implementation. The photon-by-photon Kalman fil-
ter algorithm and the innovation-based adaptation scheme are
implemented directly on a Field Programmable Gate Array
(FPGA, NI PCI-7842R) using the LabView FPGA module
(version 2009). User control and data collecting software are
written in LabView as well. The program runs on a PC computer
hosting the FPGA board and communicates with the FPGA
board via DMA (direct memory access) channels. All trapping
parameters are easily adjustable in real time. The delay time
between photon detection and the output feedback voltage is
atmost 2μs. Full details about FPGAprogramming can be found
in the Supporting Information.

Sample Preparation. Mm-cpn molecules are conjugated with
Atto647N-NHS (ATTO-TEC GmbH) through surface exposed
lysine residues and purified with P30 size exclusion columns
(BioRad). Before trapping, the sample is diluted to ∼50 pM
concentration in buffer solution containing 20 mM HEPES
(pH 7.5), 50 mM NaCl, 5 mM MgCl2, 5% (v/v) glycerol. Prior to
injection into the microfluid cell, the diluted sample is further
mixed with 10% (v/v) POP-6 (without denaturant, Applied
Biosystems), a solution for dynamic coating of the microfluidic
cell. Otherwise, sticking of Mm-cpn molecules to walls of the
microfluidic environment is observed. 30T-Atto647N oligonu-
cleotides are purchased from AnaSpec (Fremont, CA) and
diluted to ∼100 pM in buffer solution containing 40 mM Tris
acetate, 1 mM EDTA, and 12.5 mM MgCl2. Additives to reduce
photo bleaching were not required. Fluorescent beads are
purchased from Invitrogen, sonicated for 10 min, diluted to
∼100 pM in Nanopure water and injected into the trapping cell.
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